

	Bandas Microondas Radar
Ka, K, and	very short wavelengths used in early airborne radar
Ku Bands	systems but uncommon today
X-band	used extensively on airborne systems for military
	reconnaissance and terrain mapping.
C-band	common on many airborne research systems (CCRS
	Convair-580 and NASA AirSAR) and spaceborne systems
	(including ERS-1 and 2 and RADARSAT).
S-band	used on board the Russian ALMAZ satellite.
L-band	used onboard American SEASAT and Japanese JERS-1
	satellites and NASA airborne system.
P-band	longest radar wavelengths, used on NASA experimental
	airborne research system

Efectos sobre la dispersión

- Frecuencia determina:
 - Profundidad de penetración.
 - Rugosidad relativa de la superficie considerada.
- Profundidad de penetración:
 - Depende de la humedad del objetivo.
 - Las Microondas no penetran mas allá de unos milímetros en el agua.
- Polarización.
 - La polarización depende de las orientaciones de los campos eléctrico y magnético
 - Permite determinar distintas capas del objetivo en función de la polarización utilizada.

$d = (\lambda_0 \sqrt{\varepsilon'}) / (2\pi \varepsilon'')$					
Banda	X	C	С	L	
Frecuencia	10.3GHz	5.3GHz	5.2GHz	1.25GHz	
ε' (Parte Real de ε)		2.95	1.87	3.23	
ε'' (Parte Imaginaria de ε)	0.00021	0.571	0.0001	0.170	
Profundidad penetración	8.1m	0.027m	21.7m	0.404m	

Aplicaciones del SAR

- Obtención del espectro de las olas de agua en el océano.
- Clasificación de tipos de hielos.
- Seguimiento de desplazamientos del hielo.
- Modelos digitales del terreno por "interferometría"
- Detección automática de vertidos de fuel.
- Altímetros radar.
- Radargrametría.
- Geodesia: Determinación del geoide

Práctica: No muy grande por producir pérdida de detalles.

- Se supone que la ventana con menor varianza tiene los píxeles menos afectados por la onda que genera la interferencia.
- La imagen así generada está formada por una serie de áreas uniformes, cuyo tamaño depende del tamaño de la ventana que se usa. En la práctica se suele utilizar secuencialmente 2 o 3 veces incrementando el tamaño de la ventana. El resultado así conseguido se utiliza para realizar clasificación.

	1 110	ado Sigina	(Speckle)
• Se asu de 2	basa en que e me que el 95 2 veces la des	l ruido sigue una 5% de las muest viación estándar	distribución Gausiana y ras aleatorias están dentro del rango
Se	reemplaza el	píxel de interés c	con la media de los píxeles
de l den Se	a ventana, Lo tro del rango suele seguir u a signionto:	os píxeles de inte designado. in proceso repetit	rrés serán aquellos que caer tivo y la forma de aplicarlo
de l den Se es l	a ventana, Lo tro del rango suele seguir v a siguiente: Valor σ	os píxeles de inte designado. in proceso repetit Multiplicador σ	rés serán aquellos que caer tivo y la forma de aplicarlo Window
de l den Se es l Pass	a ventana, Lo tro del rango suele seguir u a siguiente: Valor σ 0.26	os pixeles de inte designado. In proceso repetit Multiplicador σ 0.5	tivo y la forma de aplicarlo Window 3x3
de l den Se es l Pass 1 2	a ventana, Lo tro del rango suele seguir v a siguiente: Valor σ 0.26 0.26	os pixeles de inte designado. In proceso repetit Multiplicador σ 0.5 1	tivo y la forma de aplicarlo Window 3x3 5x5

	L = 2.7			Concernation	L = 9.4			L = 50		
1	S/MSE (dB)	ENL	Notes	S/MSE (dB)	ENL	Notes	S/MSE (dB)	ENL	Notes	
Noisy	4.4			9.8			17.0	-	6	
Lee	9.0	144	5x5	12.8	97	3x3	18.5	446	3x3	
Kuan	9.4	144	5x5	13.0	97	3x3	18.5	448	3x3	
Gamma	9.6	140	5cc0	13.1	96	3x3	18.6	448	3x3	
Frost	10.2	127	7x7; K1.8	13.4	84	3x3; K 10	18.7	386	$3x3; K_{T,0}$	
Kalman	-	-		11.7	39			-		
Seometric	7.9	144	3 iter.	11.6	93	2 iter.	17.5	206	1 iter.	
Oddy	10.0	47	5x5; a _{0.7}	12.9	110	3x3; cq.5	16.6	367	3x3; 120.2	
AFS	\$.3	37		9.4	86		10.7	433	e de la companya de El companya de la comp	
117 1 1	10.9	151	No. 8.	13.6	172	N . S	19.6	240	N S	

/MSE (dB)	ENL	Notes	STARE		-			
Correct of the second s		and the second	(dB)	ENL	Notes	S/MSE (dB)	ENL	Notes
4.3			9.7			17.0		
13.6	68	7x7	17.3	129	7 x 7	21.9	310	7.17
14.0	74	7x7	17.4	140	7x7	21.9	319	727
14.1	80	7x7	17.5	146	7x7	22.0	373	7x7
14.6	156	7x7; K1,0	17.4	155	7x7; K3.0	22.1	313	7x7; K7.0
o Sea		1200	15.8	63	1000 8	S		anne i
13.8	471	4 iter.	16.1	555	3 iter.	20.8	218	1 iter
14.3	89	7x7; a _{0.5}	16.9	146	7x7; 00.5	20.6	370	3x3; a _{0.3}
12.2	29		14.8	90	a construction of the second	17.2	270	
16.3	241	N6: 62.0	18.6	345	$N_{0}; \delta_{1,0}$	22.1	427	$N_{6}; \delta_{9,8}$
	13.6 14.0 14.1 14.5 13.8 14.3 12.2 16.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Texturas

• Definición:

- Se define elemento de textura como el mas pequeño elemento homogéneo en cuanto a radiometría.
- Se pueden diferenciar tres tipos de texturas:
 - Micro-texturas: Similar al ruido Speckle.
 - Meso-texturas: o textura de escena. Se trata de la variación natural media de la dispersión en un conjunto de píxeles.
 - Macro-texturas: variaciones en brillo que afectan a muchos píxeles: carreteras,alineamientos geológicos, sobras forestales, etc..

Imagen Co-Registration

- Objetivo:
 - Disponer de dos imágenes (par) correladas (casadas) de la misma superficie.
- Mecanismos:
 - Correlación en el dominio original (módulo).
 - Correlación en el dominio de Fourier (fft).
- Fases:
 - Búsqueda de desplazamiento.
 - Remuestreso de una de ellas.

Soluciones al fase unwrapping							
Problemas práctico	s de la determinación	de la fase desde el					
interferograma:							
 Se suele realizar un diferencia de fases El problema que pu generen el mismo r Ejemplo: 	na integración de las fases s entre dos puntos adyacent nede aparecer es que los ca resultado.	suponiendo que la es es inferior a π. uminos de integración no					
0.2 0.0 0.8 0.0	0.2 0.0 -0.2 0.0	0.2 0.0 -0.2 0.0					
0.4 0.2 0.2 0.4	0.4 0.2 0.2 0.4	0.4 0.2 0.2 0.4					
$0.6 \ 0.8 \ 0.8 \ 0.6$	0.6 -0.2 -0.2 0.6	$0.6 \ 0.8 \ 0.8 \ 0.6$					
$0.8 \ 0.8 \ 0.8 \ 0.8$	0.8 -0.2 -0.2 0.8	$0.8 \ 0.8 \ 0.8 \ 0.8$					
Original	1ª fila - columnas	1ª columna- filas					
	Miguel Ángel Manso Callejo						

Algoritmos de unwrapping

- Recorte de residuos (Branch-cut) (tree) Goldstein
- Mínimos cuadrados.
- Mínimos cuadrados ponderados.
- Síntesis de los anteriores.
- Estimación de pendientes locales del suelo.
- Suavizados adaptados recursivos.
- Filtro de kalman.
- Minimización de diferencias ponderadas.

Miguel Ángel Manso Callejo

Estimación de las pendientes del suelo.

 Se basa en un preprocesamiento del interferograma para originar los datos y mejorar la estimación. Se sucede con la estimación de las pendientes del interferograma con fase completa a partir de los gradientes de las fases del interferograma. Por último se integra generando la imagen con fases completas.

Coherencia

- Se trata de un producto derivado del interferograma.
- Su definición matemática es:

$$\gamma_c = \frac{E\{M\cdot S^*\}}{\sqrt{E\{M\cdot M^*\}\cdot E\{S\cdot S^*\}}}$$

$$\hat{\gamma} = \left| \frac{\frac{1}{N} \sum_{i=0}^{N} M_i S_i^*}{\sqrt{\frac{1}{N} \sum_{i=0}^{N} M_i M_i^* \frac{1}{N} \sum_{i=0}^{N} S_i S_i^*}} \right|$$

Corrección geométrica del DEM.

• Otro método:

 Consisten en el cálculo de vectores tridimensionales . Hace la aproximación de que los dos vectores desde los sensores al punto son paralelos. Apoyado en la utilización de una base ortogonal que se calcula a partir del rango, doppler central y la ecuación de fase del interferograma.

• Método de refinado de la línea base por mínimos cuadrados:

- Se basa en que el vector de estado del momento puede ser refinado ya que el otro parámetro (modelo de la órbita) garantiza la precisión.
- Para este modelo se conocen las distintas fases del algoritmo de implementación:

